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Abstract—Packet classification has continued to be an important research topic for high-speed routers in recent years. In this paper,

we propose a new packet classification scheme based on the binary range and prefix searches. The basic data structure of the

proposed packet classification scheme for multidimensional rule tables is a hierarchical list of sorted ranges and prefixes that allows

the binary search to be performed on the list at each level to find the best matched rule. We also propose a set of heuristics to further

improve the performance of the proposed algorithm. We test our schemes by using rule tables of various sizes generated by

ClassBench and compare them with the existing schemes, EGT, EGT-PC, and HyperCuts. The performance results show that in a test

using a 2D segmentation table, the proposed scheme not only performs better than the EGT, EGT-PC, and HyperCuts in classification

speed and memory usage but also achieves faster table update operations that are not supported in the existing schemes.

Index Terms—Packet classification, rule table partitioning, binary search.

Ç

1 INTRODUCTION

TRADITIONALLY, Internet routers only provide the best
effort service by processing each incoming packet in the

same manner (i.e., forwarding packets based only on their
destination addresses). Today, however, packet classifiers
in routers have to compare multiple header fields of each
incoming packet against a set of filters or rules in order to
classify the packets into different flows. The classified flows
can then be used by many emerging layer-4 switching
technologies to provide quality-of-service guarantees to
packets belonging to the specified flow. The most common
header processing performed in a packet classifier is the
examination of the standard 5-tuple fields: source and
destination IP addresses, source and destination ports, and
transport protocol number. A typical packet classifier is
configured with a rule set consisting of a set of predefined
5-tuple filters. The packet classifier searches for the highest
priority filter or set of filters matching the headers of the
incoming packets in the rule table. To meet the demands for
a fast packet classification in current speed-growing
Internet, routers have to maintain an efficient data structure
for a set of predefined rules.

In this paper, we propose a set of packet classification
algorithms that are a generalization of 1D binary range and
prefix searches [3]. The basic data structure of our multi-
dimensional packet classification scheme is a hierarchical
structure of expansion lists used by the binary range and
prefix searches. Although this basic hierarchical structure is
fast, its two drawbacks are large memory consumption and
slow update process. We develop a set of optimizations to
overcome these drawbacks. The most important optimization

is the use of a multidimensional segmentation table to
partition the set of original rules into smaller subsets, each
of which is then organized by the basic hierarchical structure
of the expansion lists. The proposed algorithms augmented
with these optimizations are space and time efficient and can
provide faster rule table updates. Our experiments show that
the proposed scheme using a 2D segmentation table is better
than the existing schemes, EGT, EGT-PC [1], and HyperCuts
[19], in terms of search speed, memory usage, and update
speed. The proposed scheme using a d-dimensional segmen-
tation table is similar to HyperCuts and Common-Branches
trees [5] in that multiple dimensions are used at the same time
to partition the set of rules into smaller subsets. The
mechanism to reduce the rule duplications in the proposed
scheme is richer than that of HyperCuts and Common-
Branches trees. Their differences are summarized as follows:

1. The rules in each subset partitioned by the
d-dimensional segmentation table is organized as a
hierarchical structure of expansion lists used by the
binary range and prefix searches, while the same
cutting technique based on some dynamic criteria in
HyperCuts is applied recursively at each node to
form the multilevel decision tree. Although our
partitioning scheme is based on a predetermined
criterion, a fast update speed can be obtained.

2. If four levels of expansion lists that used the binary and
prefix searches are built for each subset partitioned by
a d-dimensional segmentation table, the linear search
at the leaf node of the hierarchical expansion list is only
operated on the final field (i.e., protocol number).
However, after reaching the leaf node of the decision
tree in HyperCuts, the linear search must be operated
on all the five fields, which is slow.

3. We provide a mechanism to control the degree of
rule duplication which is richer than that of the
Common-Branches trees [5]. If we choose the scheme
that uses the least degree of rule duplication, no rule
will be replicated among the rule subsets partitioned
by the segmentation table. In HyperCuts, the rule
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duplication is its inherent property that will result in
larger memory consumption.

This paper is organized as follows: Section 2 briefly
summarizes the related works. The problem statement and
notations are given in Section 3. In Section 4, we describe
the 1D binary prefix and range searches which are used as
our basic search structures. Many optimizations are also
proposed. Section 5 presents the proposed multidimen-
sional packet classification and its optimizations. Section 6
presents the performance results in terms of search speed,
memory requirement, and update speed. Finally, conclu-
sions are made.

2 RELATED WORKS

The process that classifies packets into flows in Internet
routers is called packet classification. Specifically, packet
classification algorithm searches a set of predefined rules
against one or more fields in the packet headers to find all
the matched rules or the best one among them.

The simplest classification algorithm is a linear search
that performs the header matching against the rules in a
one-by-one fashion. For a large number of rules, this
approach implies a long query time, but it is very efficient
in terms of memory and rule updates. To improve the
performance of query times, a 2D algorithm called Grid of
Tries (GoT) was proposed [21]. Since GoT cannot be easily
extended to more than two fields, they also proposed a
better-generalized scheme called Cross-Producting [21]. Un-
fortunately, the size of this table grows astronomically with
the number of rules. Baboescu et al. [1] proposed an
extended version of Grid of Tries (EGT). They also proposed
an improved version of EGT called EGT-PC (Path Compres-
sion) which is a standard compression scheme for tries that
function by removing single branching paths. In addition to
trie-based hierarchical schemes such as GoT, many hier-
archical decision tree based schemes have been developed
based on different data structures. In HiCuts [11], a
precomputed decision tree is built as follows: Suppose a
node T in the decision tree is associated with a set of rules.
The set of rules in T is cut into many smaller subsets that in
turn are associated with the child nodes of T . The cutting
process is repeated at each child node until the number of
rules associated with the node is not more than a threshold.
The search process is done by traversing the decision tree to
identify the matching rule that is always located in a
leaf node. Each leaf node stores a small number of rules that
are linearly searched. A modular scheme similar to HiCuts
is developed in [23], where an index jump table is used to
create multiple decision trees to save memory space, and the
range tests in HiCuts are replaced by the bit tests. In [19], an
improved version of HiCuts called HyperCuts is proposed.
Instead of selecting one dimension at a time, HyperCuts
selects multiple dimensions at the same time to cut the rules
associated with a node into many smaller rule subsets. As a
result, the depth of the decision tree will be smaller than that
of HiCuts. In [5], an enhanced decision tree based on the
concept of common-branches is proposed. Another hier-
archical structure called the Fat Inverted Segment (FIS) tree
was proposed in [8].

Tuple-Space Search proposed in [20] partitions the rules of
a classifier into different tuple categories based on the
number of specified bits in the rules. The scheme then uses

hashing among rules within the same category. The main
disadvantage of this scheme is the use of hashing that makes
the time complexity of searches and updates nondetermi-
nistic. Lakshman and Stiliadis proposed a bitmap-intersec-
tion scheme [14]. This scheme first searches each dimension
separately to yield the set of rules that matches the packet in
that particular dimension. The search algorithm can be a
binary trie or any 1D IP lookup scheme. These sets are then
intersected by using bitmaps to yield the set of rules that
match in all dimensions. One drawback of this scheme is
that it needs parallel hardware assistance and is impractical
for large classifiers due to its large memory consumption. A
modified version of the bitmap-intersection scheme is
presented in [2]. Gupta and McKeown proposed a scheme
called Recursive Flow Classification (RFC) [10]. This scheme is
very fast but it requires precomputation, a large amount of
memory, and parallel hardware support.

The related works described above are in no way a
complete list in the literature. Readers interested in other
schemes can refer to the two survey papers in [23] and [12].
The most recent paper using a hardware-based smart rule
cache for fast searches can also be found in [6].

3 PROBLEM STATEMENT AND NOTATIONS

The notations needed in this paper are first summarized in
Table 1. The process of packet classification (PC) classifies
packets into flows. A predefined rule is used to identify a
flow. All rules defined in a router are collected as a classifier.
Therefore, the process of the packet classification is to search
a classifier against one or more fields of the packet header to
find all the matched rules or the least cost one among them if
each rule is also associated with a cost. For a d-dimensional
packet classification, each rule R in the classifier consists of
d components,R ¼ ½F1; . . . ; Fd�, where Fi ¼ ½Li; Ui� is a range
of values from Li to Ui for i ¼ 1 to d. The search for an
incoming packet p in the classifier is done by presenting the
header fields ½f1; . . . ; fd� of p as the keys, where each fi is a
singleton value. The ruleR is said to match packet p, if for all
dimensions i, the field value fi of packet p lies in the
range Fi. The PC problem is to determine the least cost rule
that matches the packet. For example, the layer-four
switching of the Internet protocol studied in this paper
consists of five dimensions: the source address, destination
address, source port, destination port, and protocol number.
Table 2 shows an example of 5D real-life classifier in which
by convention, the first rule R1 has the highest priority and
the last rule R4 has the lowest priority. Table 3 illustrates the
classification results for three incoming packets.

4 ONE-DIMENSIONAL PACKET CLASSIFICATION

We give the formal definition of 1D packet classification as
follows: Given a set ofn rules,G ¼ fGi ¼ ðRi; CiÞjRi ¼ ½Li; Ui�
is a W -bit range and Ci is the priority of Gi for
i ¼ 0; . . . ; n� 1g, the process of 1D packet classification for
a address p is to find the rangeGh 2 G, such thatRh contains p
and Ch is the highest. The longest prefix matching (LPM) of
the IP lookup problem is a special case of the 1D packet
classification, where the range of the values specified in the
only dimension follows the prefix format and longer prefixes
get the higher priorities. The IP lookup problem has been
studied extensively in the literature [17]. However, if rangeRi
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is arbitrary, the static or dynamic versions of segment trees or
interval trees [4], [16], [18] may be the better solution.

We know that algorithms designed to achieve better
update speeds usually compromise search speed and
consume more memory. Large memory consumption
usually results from the fact that these algorithms must be
implemented with pointers. On the contrary, the proposed
algorithms employ the linear lists (arrays) as the primary
search structures for both prefixes and ranges. For prefixes,
we use the binary prefix search (BPS) algorithm proposed in [3]
that uses the binary search on a sorted list of the original
prefixes and a small number of auxiliary prefixes. For ranges,
we design an algorithm called binary range search (BRS_Int)
that uses a new endpoint definition for ranges. The enclosure
relationship is removed by the concept of elementary
intervals. Both the proposed algorithms for prefixes and
ranges will be optimized by a number of heuristics.

4.1 Proposed Binary Search for Prefixes

Our main idea in the proposed BPS is based on the
comparison of prefixes of different lengths [3] which are
defined as follows:

Definition 1. The inequality 0 < � < 1 is used to compare two
prefixes in ternary format.

For example, we have A < B < C for 8-bit prefixes,
A ¼ 0000�0 � � � , B ¼ 0000�0100, and C ¼ 10 � �� � � � �.
In order to have an efficient implementation to compare
prefixes of different lengths, we propose a new prefix
representation of length ðW þ 1Þ bits in [19] as follows:

Definition 2. For a prefix of length i, bW�1; . . . ; bW�i� , where
bj ¼ 0 or 1 for W � 1 � j �W � i, its binary representation
is bW�1; . . . ; bW�i10; . . . ; 0 with W � i trailing zeros.

For example, prefix 0000�0 � � � can be represented as
0000-0100-0. The ðW þ 1Þ-bit binary prefix representation is
shorter than W þ logW bits for the length format of IP/len or
2W bits for the mask format of IP/mask. As a result, a ðW þ 1Þ-
bit binary comparison operation is sufficient to compare
two prefixes of different lengths. With this definition, a very
fast binary search can be applied on a linear list of sorted
disjoint prefixes. However, the prefix enclosure defined as
follows makes the binary search complicated.

Definition 3. Prefix enclosure. A prefix is said to be enclosed or
covered by another prefix if the address space covered by the
former is a subset of that covered by the latter. We use B � A
or A � B to denote that prefix B encloses prefix A, where �
or � is the enclosure operator. If neither A encloses B nor B
encloses A, we say that A and B are disjoint.
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By keeping a linear list of prefixes sorted, we cannot
guarantee finding the correct LPM if we perform the binary
search on the list. Consider the binary search operation for
addressDst ¼ 00010 on the sorted list of four 5-bit prefixes in
Fig. 1a. The first prefix to be compared is the middle one
C ¼ 001��. Prefix C does not match Dst and the search
continues. Because Dst is smaller than C, prefix D is
compared. Prefix D does not match address Dst either.
Obviously, the final LPM should be B. Prefix B did not get
any chance to be examined in the process of the binary search.
To solve the problem, we generate some auxiliary prefixes
that inherit the routing information of the original LPM (e.g.,
B) and place them at the locations where the binary search
operations can find them. For example, if we insert an
auxiliary prefix 00��� inheritingB’s routing information, then
the search operation for address 00010 will succeed. There-
fore, the feasible way is to generate two auxiliary prefixes
from B that cover both sides of prefix C.

We use a two-step method to construct the expansion list
consisting of the sorted original and auxiliary prefixes. In
the first step, the hierarchical list is constructed from the
original prefixes such that the address space covered by the
parent node contains that covered by its children. Fig. 1b
illustrates the hierarchical list constructed from the prefixes
in Fig. 1a. In the hierarchical list, the node structure contains
three fields: the prefix which is an original prefix, the size
which records the number of prefixes in the next level
pointed to by the current prefix, and the child which is the
pointer pointing to the next level. The prefixes in one level
of the hierarchical list are disjoint. The hierarchical list used
for obtaining the expansion list is more efficient than the
binary trie used in [3]. The expansion list is obtained by a
simple in order traversal called Expansion_traversal() as

shown in Fig. 2. Auxiliary prefixes are generated recur-
sively if the condition in lines 3, 7, or 10 of Fig. 2 is true.

For the example shown in Fig. 1, prefix B encloses D and
C. Therefore, three auxiliary prefixes—B1, B2, and B3—are
generated from prefix B, such that B1 < D < B2 < C < B3.
B1 is LCAðMinðBÞ; DÞ, which is the longest common
ancestor of the lowest address of prefix B and prefix D.
Similarly, B2 is LCAðD;CÞ and B3 is LCAðC;MaxðBÞÞ. The
final result is shown in Fig. 1c. Notice that one of the auxiliary
prefixes may be the same as the original prefix that generates
them. As in the above example, B3 is the same as B.

It can be seen that k disjoint prefixes covered by an
enclosure prefix will result in at most 2kþ 1 prefixes in the
expansion list. Therefore, it is not difficult to show that the
worst-case number of prefixes in the expansion list is less
than 2N for a routing table ofN prefixes (see [3]). The binary
search algorithm [3] on the expansion list is illustrated in
Fig. 3. When the destination IP address (Dst) is found to be
located between two adjacent prefixes (say P1 and P2), that
is, P1 � Dst � P2, additional operations are needed to
check if either P1 or P2 matches the destination IP address,
and if both prefixes match the destination address, then the
LPM is the longer one, as shown in lines 2-7 of Fig. 3.

Discussions. The binary range search (BRS) proposed in
[15] is another data structure that can store the original
prefixes in an array. We will show that BPS performs better
than BRS. The differences between BPS and BRS are
described as follows: First, each prefix is identified as an
individual entity instead of as the two endpoints for a range
in BRS. Moreover, only one port information is associated
with each prefix in BPS while two ports such as “> ” and
“¼ ” ports are associated with each endpoint in BRS.
Second, unlike BRS, the interval not covered by any original
prefix will not be stored in the expansion list of BPS.
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Fig. 2. Constructing the expansion list stored in array ExpList[] from the hierarchical list.
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Therefore, the size of the expansion list in BPS will be
smaller than the size of the endpoint list in BRS.

The first two rows of Table 4 show the average
performance results of BPS and BRS for two typical routing
tables. BPS-16 and BRS-16 will be discussed later in
Section 4.2.1. The detailed simulation environment is similar
to that in [3], described in Section 6. We can see that BPS
performs much better than BRS in search speed, update
speed, and memory consumption. The update speeds of BPS
and BRS are very slow, which is five orders of magnitude
slower than the search speed. Notice that the search time
ratio of BRS and BPS should be close to logðNBRSÞ= logðNBPSÞ
theoretically because they both follow the binary searches.
Our results for these two tables are better than the theoretical
results because the node structure of BPS is smaller than that
of BRS. In addition to the two tables in Table 4, We also
verify the search performance improvement for BPS with 10
other routing tables of sizes from 79,530 to 191,810. The
search time ratio of BRS and BPS is between 1.13 and 1.41.

4.2 Optimizations for the Proposed Binary Prefix
Search

To improve the update speed and the search speed, the
simplest solution may be the use of a k-bit segmentation table
[3], [9]. In this section, we discuss four approaches to the
implementation of the k-bit segmentation table. For the
moment, we assume that the most significant k bits in the
W-bit address space are used to construct the k-bit

segmentation table. Later on, we shall discuss the better
schemes for selecting these k bits.

4.2.1 Simple k-Bit Segmentation Table

This approach is the traditional k-bit segmentation table that
is implemented as an array of 2k elements. This k-bit
segmentation table divides the W -bit address space into
2k segments of 2W�k addresses. Each element in k-bit
segmentation table contains two fields, namely, the default
port of the segment and the pointer pointing to the prefix
subset that contains the prefixes of lengths longer than k
covered by the address space of the segment. When the
update operations are needed, each element needs one more
field, called the enclosure list, in which the prefixes that
completely cover the address space of the corresponding
segment are stored. An expansion list for the proposed BPS
is built for the prefixes of each segment. Specifically, if an
original prefix is longer than k bits and the value of the first
k bits of the prefix is p, it is stored in the pth segment. If an
original prefix P is of length l � k, it is stored in the
enclosure list of the 2k�l segments whose address spaces are
completely covered by P . The port of the longest prefix in
the enclosure list is stored in the default port field of the
segment. Notice that the memory space for the enclosure
lists is not usually considered as a requirement for the
search operations. The enclosure lists are only required for
update operations and are thus stored in the memory space
independent of that used for searches. We adopt the
following update process. First, the affected segments are
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computed from the prefix (say P ) to be inserted or deleted.
Second, if the length of P is shorter than or equal to k, only
the default port fields and enclosure lists of the affected
segments need to be updated. If P is longer than k, only the
expansion list pointed to by the pointer field of the affected
segment needs to be updated. We update each affected
segment sequentially. When a segment is busy on the
update process, only the search operations accessing this
segment are suspended until the update process is
completed. No other search operations are postponed.

The search algorithm works as follows: The first k bits of
the destination address are used to index the k-bit segmenta-
tion table. It takes only one memory access to locate the target
segment consisting of a subset of the original prefixes to be
matched with the remaining W � k bits of the destination
address. If the LPM is found, then the search succeeds.
Otherwise, the default prefix recoded in that segment is the
LPM. As we can see, the larger is k, the smaller is the
maximum expansion list among all segments, and thus, the
faster is the search speed.

Consider the update process. When the prefix to be
inserted or deleted is longer than k bits, only the expansion
list of the segment that covers the prefix needs to be updated.
However, when the prefix to be inserted or deleted is of a
length l that is smaller than or equal to k, the enclosure lists
of 2k�l segments have to be updated. Therefore, in order to
minimize the worst-case update overhead, k must not be
very large. This contradicts the larger k required for a faster
search speed.

Table 4 also shows the performance of BPS and BRS [15]
with a 16-bit segmentation table, denoted by BPS-16 and
BRS-16, respectively. Obviously, the update speeds of both
BPS-16 and BRS-16 are much better than their counterparts,
BPS and BRS, respectively. Their search speeds are also
improved. However, the memory requirement increases too.

4.2.2 k-Bit Segmentation Table and k Set

This approach is a variant of the first approach for
improving the update speed and memory requirement.
The original prefixes of lengths shorter than k bits are not
duplicated in the enclosure list of the k-bit segmentation
table. Instead, they are placed in an additional subset, called
k Set. As in the first approach, the expansion lists of
nonempty segments need to be constructed. The expansion
list constructed from the prefixes in k Set is also needed.

When performing a search, the first k bits of the
destination address are used to locate the target segment.
Then, the BPS is performed in the expansion list of the
target segment to find the LPM. If no LPM is found, an
additional BPS needs to be executed in the k Set expansion
list. When a prefix is to be inserted or deleted, only the
prefix subset in the corresponding segment or the k Set
needs to be updated. Since either the segment size or k Set
size is much smaller than the original prefix set, the update
performance will be greatly improved.

If we choose a large k, one problem of this approach is
that the k Set could be larger when compared to the
segments. A large k Set degrades the performance of the
worst-case search and update operations. Fortunately, we
can reuse the idea of the segmentation table to further
reduce the search space in the k Set. Because the k Set
contains only the prefixes of a length shorter than k, we can
build an l-bit segmentation table and an l Set for k Set. We

denote this further improvement as the (k; l)-bit segmenta-
tion table approach. The worst-case search operations now
include the searches in the target segment, the target
segment from k Set, and the l Set. Since there is no prefix
of length shorter than 8 in the real routing tables, the best
choice of l is 8. By choosing 8 for l, the l Set will be empty.
As a result, the worst-case number of prefix subsets that
must be searched is still two. Thus, the worst-case search
and update performance will be improved. For example, the
fourth row of Table 5 shows the sizes of the largest segment
and k Set for two real routing tables. We can see that k Set is
much larger than the largest segment. After applying the
8-bit segmentation table to k Set, the largest segment of the
8-bit segmentation table becomes much smaller than k Set.

4.2.3 Simple k Set

In this approach, the k-bit segmentation table does not
physically exist and the original prefixes of lengths longer
than or equal to k are not divided into 2k subsets. As in the
second approach, the original prefixes of lengths shorter
than k are placed into the k Set. Other prefixes are placed
into a single subset called the main Set. The expansion lists
for both the main Set and k Set are constructed for the
search process. We first search the main Set. If a match is
found, it must be the longest match. Otherwise, we have to
search the k Set for a match. Compared to the original BPS,
the number of auxiliary prefixes in the expansion list is
reduced, and thus, the memory storage is also reduced.
Obviously, the update process is as simple as the second
approach. As stated in the second approach, the same idea
for this approach can be reused for k Set. For example, we
can use a simple l Set approach to divide the k Set into two
subsets containing the prefixes of lengths from k� 1 to l and
the prefixes of lengths shorter than l, respectively.

4.2.4 k Set and Hashing

This approach is similar to the third one except that it uses a
hashing table to evenly divide the prefixes in main Set into
many small subsets. The prefixes in main Set are of lengths
greater than or equal to k. This approach selects j bits out of
the first k bits to divide main Set into 2j subsets. The
expansion lists of all 2j subsets need to be constructed to
apply the proposed BPS. The second approach is a special
case of this approach when j ¼ k.

A greedy scheme or a more intelligent scheme can be
developed to find the best j bits to partition main Set.
Theoretically, there are totally Ck

j ¼ kðk� 1Þ 	 
 
 
 	 ðk� jþ
1Þ=j! possible choices for selecting j bits out of k bits. The
best selection of j bits must minimize the total memory
requirement for the routing table and minimize the total
prefixes in the k Set and the largest segment. The latter
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implicitly results in the best worst-case search speed. The
exhaustive search to check all the possible combinations is
too time-consuming. However, a more intelligent scheme
may be too difficult, if not impossible. A better choice may
be the greedy algorithm that selects one bit at a time with
the specification of optimizing one metric that we are
concerned with. One example of a greedy algorithm can be
found in [25]. We will not describe any details on how to
select the best j bits in this paper.

4.3 Proposed Binary Search for Ranges

How to define the endpoints of a range has a strong
relationship to BRS performance. Traditionally, the two
endpoints of a range ½L;U � are L and U . Additional
information must also be recorded to identify if the
destination address is equal to L or U of a range. For
example, the BRS proposed in [15] records the “¼ ” and “> ”
ports for solving the cases when the destination address is
equal to an endpoint and when the destination address
locates between two endpoints, respectively. With “¼ ” and
“> ” ports, the BRS can be performed as follows: If the
destination address d is equal to an endpoint E½i� (or
between two endpoints E½i� and E½iþ 1�), then the final
result is E½i�: ¼ port (or E½i�: > port). Fig. 4b shows the
expansion list for five original ranges in Fig. 4a based on the
BRS in [15]. In this paper, we propose a BRS based on a
different endpoint definition (called BRS Int) as in [4],
where each new endpoint is associated with only one port.
As a result, memory requirement of the proposed binary
search is smaller than the BRS proposed in [15].

Definition 4 [4]. The two integer endpoints of a range ½L;U � are
defined as L� 1 and U when L 6¼ 0, but only one endpoint U
is defined when L ¼ 0.

The endpoint 0 is only stored when the lower address of a
range is 1 (e.g., ½1; U �) or when the upper address of a range is
0 (i.e., [0, 0]). Let the expansion list be E½0; . . . ; s� 1�. The
elementary intervals formed by the expansion list are
½0; E½0��, ½E½i� þ 1; E½iþ 1�� for i ¼ 0 to s� 2, and ½E½s� 1� þ
1; 2W � 1� if E½s� 1� 6¼ 2W � 1. To simplify the search
operation, if E½s� 1� 6¼ 2W � 1, we add an additional

element E½s� of value 2W � 1. In the expansion list,
E½0�:port is the port associated with the elementary interval
½0; E½0�� and E½i�:port for i ¼ 1 to s� 1 is the port associated
with ½E½i� 1� þ 1; E½i��. For example, the expansion list of the
range set in Fig. 4a can be constructed as shown in Fig. 4c.

The proposed binary search algorithm is formally shown
in Fig. 5. Basically, the search determines two cases where
Dst � E½0�:endpoint a n d E½i�:endpoint < Dst � E½iþ
1�:endpoint for i > 0. For the first case, the matched port is
E½0�:port. For the second case, the matched port is
E½iþ 1�:port. If the destination address Dst is smaller than
or equal to the E½L�:endpoint, then the matched port is
E½L�:port. Otherwise, we compute the middle index
M ¼ dðLþRÞ=2e. Depending on whether E½M�:endpoint �
Dst or not, we recursively call BRS IntðE;M þ 1; R;DstÞ
or BRS IntðE;L;M;DstÞ.

4.4 Optimizations for the Proposed Binary Range
Search

Four approaches for the k-bit segmentation table are
discussed. Because these four approaches are similar to
their counterparts for prefixes, only the differences will be
described.

4.4.1 Simple k-Bit Segmentation Table

An array of 2k elements is used as thek-bit segmentation table.
If a range overlaps with any part of the address space of a
segment, it is stored in the range subset of that segment. For
each nonempty segment, the proposed BRS ðBRS IntÞ is
performed.

4.4.2 k-Bit Segmentation Table and k Set

The range overlapped with at least three segments is placed
into the k Set; otherwise, it will be placed into the segments
with which it overlaps. As in the case for prefixes, the
expansion lists for all nonempty segments and the k Set
expansion list need to be constructed.

The update process for a rangeR is limited to the segment
that completely covers R, the segments partially overlapped
with R, or the k Set. In the worst case, the expansion lists of
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Fig. 4. Different approaches for ranges. (a) The list of six 5-bit original ranges. (b) The binary range approach proposed in [14]. (c) The proposed

binary range approach ðBRS IntÞ.

Fig. 5. The proposed BRS for the integer number endpoints.
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three segments need to be modified. The size of the original
expansion list is much larger than the segment expansion list
when k is large, say k > 8. Therefore, the gain in search
speed from shrinking the segment expansion list will be
much more than the loss in searching the k Set expansion
list. The overall search speed will also be improved.

4.4.3 Simple k Set

The k-bit segmentation table does not physically exist. The
ranges that completely cover any segment or the ranges that
overlap with at most two segments are placed into the
k Set. Other ranges are placed into the main Set.

4.4.4 k Set and Hashing

This approach is similar to the prefix counterpart in
Section 4.2.4.

5 MULTIDIMENSIONAL PACKET CLASSIFICATION

In the multidimensional PC problem, we are given a set
of rules R ¼ fR1; . . . ; Rng over d fields (dimensions). A
d-dimensional rule is in the form of Ri ¼ ðF1i; . . . ; FdiÞ,
where Fki for k ¼ 1 to d, called the kth filter, is a Wi-bit
prefix or range. Each rule is associated with a cost or
priority. We use R ¼ ðF1; . . .FdÞ when no confusion is
incurred. The header field values of a packet are denoted as
ðP1; . . . ; PdÞ. A rule is applicable to a packet if for each
dimension k, the field value Pk of the packet lies in the
range covered by Fk. The multidimensional PC problem is
to find the rule with the least cost or the highest priority that
applies to the packet.

5.1 Hierarchical Expansion List

We now illustrate how the proposed BPS and the proposed
BRS ðBRS IntÞ can be applied to the multidimensional PC

problem. The basic data structure proposed in this paper for
the multidimensional PC is a hierarchical expansion list of
BPS and BRS Int. The hierarchical data structure is built as
follows:

1. Build the F1 hierarchical list based on the F1 field
values of the rules.

2. Push all subrules ðF2; . . . ; FdÞ associated with the
elements of F1 hierarchical list in higher levels to
their children in lower levels. We call this operation
the rule pushing.

3. Perform an expansion traversal as shown in Fig. 2 in
the F1 hierarchical list to construct the F1 expansion
list. Now, each element of the F1 expansion list
contains a number of ðd� 1Þ-dimensional subrules
ðF2; . . . ; FdÞ.

4. Continue steps 1, 2, and 3 for each dimension except
for the rule pushing operation (step 2) which is not
required for the last dimension.

Consider an example 2D rule set in Fig. 6a. We first build

the F1 hierarchical list according to the F1 values of all

rules as shown in Fig. 6b. Second, the rule pushing

operation is performed for field F1 as shown in Fig. 6c.

Then, the F1 expansion list is obtained by performing the

expansion traversal on the F1 hierarchical list. Each

element of the F1 expansion list now contains a number

of subrules consisting of only F2 fields. By repeating the

same construction step, all F2 hierarchical lists from the

subrules (F2) are constructed. Since F2 is the last

dimension, no rule pushing is required. Finally, we perform

the expansion traversals on all the F2 hierarchical lists to

obtain the F2 expansion lists. The complete hierarchical

expansion list is shown in Fig. 6d. Notice that we show the

final multiple matched rules at the bottom of Fig. 6d. If a
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(d) The complete hierarchical expansion list. (e) Simple k Set approach of k ¼ 2 with rule duplication.
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priority is given to each rule, the highest priority rule can be

obtained easily.
Now, we describe how the proposed data structure is

matched with the headers of the incoming packets. The

complete multidimensional packet classification algorithm

Proposed_PC_Algorithm() is illustrated in Fig. 7. Proposed_

PC_Algorithm() uses either the proposed binary prefix search

BPS_search() or the proposed binary range search BRS IntðÞ
to find the matched rules against the header fields of the

incoming packet. The output of Proposed_PC_Algorithm() is a

set of matched rules. Assume that the headers of the

incoming packet are (0, 3) and that the rule set is from

Fig. 6a. The F1 expansion list in Fig. 6d is first checked

against the F1 field of the packet with address 0. A binary

search finds that the longest prefix match is the first

element 00000. Then, by following the child pointer from

element 00000, the binary search is performed against the

field F2 of the packet with address 3. Interval [3, 3] is

matched, and thus, the final matched rule is A.

5.2 Optimizations

The number of the expansion lists and the total size of all

these expansion lists have a direct impact on the memory

requirement and search speed. By carefully analyzing the

hierarchical expansion lists, we develop the following

optimization techniques to reduce the memory space

needed by the proposed algorithm and improve the search

speed. The first two techniques are basically designed for

saving memory. However, the other two techniques are

designed for improving the search speed.

5.2.1 List Sharing

Many auxiliary prefixes or default intervals are generated

from the same original prefix and range fields of the original

rules and thus share the same set of subrules. Therefore,

some expansion lists pointed to by these auxiliary prefixes

or default intervals are very likely the same and can be

shared. For the example in Fig. 6d, the auxiliary prefixes

00000, 00�, and 0� generated by BPS Int on the F1 field

point to the same set of subrules [3, 3] and [16, 24], and thus,

they share the same F2 expansion list of [3, 3] and [16, 24].

5.2.2 Sequential Search

If the number of subrules left to be matched in a node of the
hierarchical list is less than a predefined threshold, it is
reasonable to perform a sequential search instead of a more
complicated search algorithm like the ones proposed in this
paper.

5.2.3 Hierarchical k-Bit Segmentation Table

In this optimized scheme, we avoid generating too many
auxiliary prefixes or default intervals by using the four
approaches of the k-bit segmentation table proposed earlier
for 1D prefixes and ranges in a dimension-by-dimension
manner.

Consider the rule set in Fig. 6a and the simple k Set
approach with k ¼ 2. We first construct theF1 expansion list.
Because rulesA andB are of a length shorter than 2, we have
main Set ¼ fC;Dg and k Set ¼ fA;Bg. Since main Set
and k Set are smaller than the original rule set, two shorter
F1 expansion lists are obtained. After the F1 expansion lists
are obtained, we have two options to construct the F2
expansion lists: with or without rule duplication.

Option with rule duplication. If any rule in k Set covers a
rule in main Set, its ðd� 1Þ-dimensional subrule is
duplicated in the main Set. Fig. 6e illustrates the complete
expansion lists with rule duplication. Because the root of
each subhierarchical expansion list is associated with a
k Set expansion list, the classification algorithm needs to
be modified to comply with the modified data structure as
follows: We first search the F1 expansion list of the
main Set. If a matched element is found, we continue the
search in the F2 expansion lists pointed to by the matched
element. Whether or not a final matched rule is found, we
do not go back to search the F1 expansion list of k Set. If
the search is not satisfied with the F1 expansion list of the
main Set, the F1 expansion list of k Set must be searched.
In the worst-case scenario, both the main Set and the
k Set need to be searched in each level of the hierarchical
expansion lists. However, based on our performance
experiments, searching two small expansion lists of the
main Set and k Set is faster than searching the large
expansion list of the union of the main Set and the k Set.
Thus, both the search speed and memory consumption
improve over the original hierarchical expansion list.
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Fig. 7. The proposed multidimensional classification algorithm.
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Option without rule duplication. No ðd� 1Þ-dimensional
subrule of k Set in F1 field is duplicated in main Set. As a
result, the ðd� 1Þ-dimensional subrule set pointed to by any
element in the F1 expansion list becomes smaller than the
original one. The memory consumption is further reduced.
However, we need to search both the main Set and the
k Set in each level of the hierarchical expansion lists. The
search speed may be worse than the original one. However,
if the depth of the hierarchical expansion list is not high
(e.g., only F1 and F2 fields are used to construct the
hierarchical expansion list in the 5D packet classification),
this approach may be a good choice.

Selecting the dimension order. It is not difficult to learn that
the performance in terms of memory consumption, search
speed, or update speed will be different if the dimension
order used by the proposed hierarchical scheme is different.
Some packet classification algorithms proposed in the
literature are restricted to the prefix fields. Therefore, only
the source and destination address fields are used to
construct the desired data structure and the subsequent
subrules will be processed linearly. Examples are the trie-
based schemes such as hierarchical trie, grid of trie, and
extended grid of trie with path compression, to name a few.

We use the following heuristics to select the best
dimension order. We only discuss how to select the first
dimension since the process of selecting the second and
succeeding dimensions is similar. The first factor to consider
is the size of the F1 expansion list denoted as F1 size. The
second factor is the size of the largest F2 expansion list
denoted as max F2 size. For the example in Fig. 6d, the size
of the F1 expansion list is 6 and the size of the largest among
all the F2 expansion lists is 5. We select the dimension such
that the sum of F1 size and max F2 size is minimal. Based
on our experiments, the memory sizes are much different if
the dimension order is different, but the search performance
has no significant difference. Although other heuristics
proposed in HiCuts [14] and HyperCuts [19] can also be
used, their performance gains strongly depend on the
characteristics of the rule tables. Therefore, it is not easy to
evaluate which heuristic performs better than the others.
Notice that in the proposed scheme, the first two dimen-
sions have the strongest impact on the overall performance
in memory consumption. If more preprocessing time is
allowed, an exhaustive search may be a better choice.

5.2.4 d-Dimensional k1 	 
 
 
 	 kd-Bit Segmentation

Table

We have shown that the k-bit segmentation table can be used
one dimension at a time sequentially. In fact, the concept of
the k-bit segmentation table can be applied for more than
one dimension at once. Therefore, the d-dimensional
k1 	 
 
 
 	 kd-bit segmentation table is proposed. The modular
packet classification [24] and HyperCuts [19] employed a
similar technique. Because the size of the d-dimensional
k1 	 
 
 
 	 kd-bit segmentation table is selected statically, one
main difference from the modular packet classification [24]
and HyperCuts [19] is that the proposed k1 	 
 
 
 	 kd-bit
segmentation table has a better performance in update speeds.

In the proposed k1 	 
 
 
 	 kd-bit segmentation table, the
address space 2W1 	 
 
 
 	 2Wd is divided into 2k1 	 
 
 
 	 2kd

hyperrectangles of size 2W1�k1 	 
 
 
 	 2Wd�kd . We shall use
the names hyperrectangle, rectangle, and segment inter-
changeably. Each hyperrectangle is associated with a small

number of rules. As in the 1D k-bit segmentation table
implemented with an array of 2k elements, if only one
memory reference is needed to reach the small set of rules
associated with the hyperrectangle that matches the incom-
ing packet, then the search performance will be greatly
improved. In the real 5D classifier, a 2D k1 	 k2-bit
segmentation table may have been sufficient to divide the
total address space into smaller rectangles such that the
number of associated rules in each rectangle is not large. In
other words, a larger segmentation table like the 3D
k1 	 k2 	 k3-bit segmentation table may not be needed.
Subsequently, we only discuss the 2D k1 	 k2-bit segmenta-
tion table in the W1 	W2 address space to illustrate the idea
of the proposed d-dimensional k1 	 
 
 
 	 kd-bit segmenta-
tion table. Since all the proposed optimization techniques
such as simple array of 2k elements, k Set, etc. can be
applied directly, we only explain the proposed scheme
using an array of 2k elements and k Set.

In the proposed 2D k1 	 k2-bit segmentation table, we
have four kinds of rule subsets, namely, k1k2 Set, k1 Set,
k2 Set, and segment Si;j for i ¼ 0 to 2k1 � 1 and j ¼ 0 to
2k2 � 1. There is the 2k2 k1 Set and the 2k1 k2 Set. Si;j denotes
the address area of ½i	 2W1�k1 ; ðiþ 1Þ 	 2W1�k1 � 1� 	
½j	 2W2�k2 ; ðjþ 1Þ 	 2W2�k2 � 1�. Assume that a rule R
covers the area of ½X1; X2� 	 ½Y 1; Y 2�. Rule R is duplicated
in the k1k2 Set, k1 Sets, k2 Sets, or segments based on the
rule placement algorithm along with two parameters c1 and
c2 as follows:

Let i2 ¼ bX2=2W1�k1c, i1 ¼ bX1=2W1�k1c, j2 ¼ bY 2=2W2�k2c,
and j1 ¼ bY 1=2W2�k2c:

1. If i2 � i1 þ 1 > c1 and j2 � j1 þ 1 > c2, then R is put
in the k1k2 Set.

2. If i2 � i1 þ 1 � c1 	 c2 and j2 � j1 ¼ 0, then R is put
in Si;j1

for i ¼ i2; . . . ; i1. Otherwise, if i2 � i1 þ 1 > c1

and j2 � j1 þ 1 � c2, then R is put in k1 Setj for
j ¼ j2; . . . ; j1.

3. If i2 � i1 ¼ 0 and j2 � j1 þ 1 � c1 	 c2, then R is put
in Si1;j for j ¼ j2; . . . ; j1. Otherwise, if i2 � i1 þ 1 � c1

and j2 � j1 þ 1 > c2, then R is put in k2 Seti for
i ¼ i2; . . . ; i1.

4. If i2 � i1 þ 1 � c1 and j2 � j1 þ 1 � c2, then R is put
in Si;j for i ¼ i2; . . . ; i1 and j ¼ j2; . . . ; j1.

A rule is placed in at most c1 	 c2 segments, at most
c2 k1 Sets, at most c1 k2 Sets, or in the only k1k2 Set. Fig. 8
shows the final rule placement result with c1 ¼ 2 and c2 ¼ 1
for an example rule set consisting of seven rules in which
the first and the second fields are in the prefix and range
formats, respectively. The hierarchical expansion list is
constructed for each subset. The proposed BPS or BRS can
be applied as follows: If the header values of the incoming
packet fall into an address space covered by the segment
Si;j, then the hierarchical expansion lists of the rule subsets
corresponding to Si;j, k1 Setj, k2 Seti, and k1k2 Set are
searched for the best match.

The main purpose of increasing k1 and k2 is to have a
small segment. The larger the values of k1 and k2, the
smaller is the address space covered by each segment, and
thus, the smaller is the size of rule subset belonging to a
segment. Thus, searching a segment will be faster when k1

and k2 are large. However, larger k1 and k2 will cause many
rules that originally belong to a segment with smaller k1

and k2 to be moved to k1 Set, k2 Set, or k1k2 Set. As a result,
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the sizes of k1 Set, k2 Set, and k1k2 Set increase, and thus,
performing searches in them slows down. To overcome this
contradiction, we trade the memory space for faster search
speed by introducing the rule duplication factors c1 and c2.
Large c1 and c2 prevent k1 Set, k2 Set, or k1k2 Set from
being increased too much while k1 and k2 increase. For
example, when c1 is set to 2 in the example of Fig. 8, rules
R3 and R5 are duplicated into two segments. However, if c1

is set to 1, rules R3 and R5 will be put in k1 Set2 and
k2 Set3, respectively.

Notice that if we employ the approach similar to the
simple k-bit segmentation table, k1 Set, k2 Set, and k1k2 Set
can be completely removed by duplicating the rules that are
supposed to be placed in k1 Set, k2 Set, or k1k2 Set into
segments. In other words, a rule must be duplicated in the
segment Si;j as long as it overlaps Si;j. In this case, we only
search one rule subset instead of four separate searches in
the corresponding segment, k1 Set, k2 Set, and k1k2 Set. At
the first glance, we may think that the simple k-bit
segmentation table approach may perform better than the
approach using k1 Set, k2 Set, and k1k2 Set. However, as
our performance experiments show, the approach using
k1 Set, k2 Set, and k1k2 Set performs better because any
segment, k1 Set, k2 Set, or k1k2 Set is much smaller than the
segment in the simple k-bit segmentation table. In other
words, searching four small rule subsets is faster than
searching a large rule subset by using the proposed binary
prefix and range searches.

Further improvement. This further improvement is
applicable to the applications that only need to find the
highest priority rule instead of all the matched rules. Take
as an example the case wherein all the four rule subsets, the
segment Si;j, k1 Set, k2 Set, and k1k2 Set, need to be
searched. We record the highest priority values of k1 Set,
k2 Set, and k1k2 Set independently. Thus, after finding the
matched rule with the highest priority value pri in Si;j, if pri
is higher than the highest priority among the rules in
k1 Set, we no longer need to search k1 Set. A similar
process can be applied to k2 Set and k1k2 Set to avoid
searching in k2 Set and k1k2 Set. Although this optimiza-
tion must improve the search performance, the update
process may be affected. For example, if the highest priority
rule is deleted from k1 Set, we have to search the second
highest priority in k1 Set to make it become the highest one.
Fortunately, a simple priority queue can serve as the

solution. As a result, the rule deletion speed will be as fast
as the original one. The memory required for the priority
queue is small and, thus, has a negligible impact on the
total memory requirement for the proposed scheme.

5.3 Complexity

We only give the worst-case complexities of search and
memory requirement for the hierarchical BPS tree (i.e., the
unoptimized data structure). Other optimizations will have
the same worst-case performance as the unoptimized one
although their average performance will be much better.
First, consider the F1 expansion list of a rule set containing
N d-dimensional rules. We have shown that there are at
most 2N � 1 elements in the F1 expansion list. Each
element of the F1 expansion list is a prefix or an interval
that is assumed to be covered by F1 fields of OðNÞ rules. In
other words, the size of the set of ðd� 1Þ-dimensional rules
pointed to by each element of the F1 expansion list is OðNÞ.
As a result, the worst-case space complexity of the proposed
data structure can be formulated in the following recursive
equation: SðN; dÞ ¼ OðNÞ þOðNÞ 	 SðN; d� 1Þ. Thus, the
worst-case space complexity is SðN; dÞ ¼ OðNdÞ. In practice,
the size of the set of ðd� 1Þ-dimensional rules pointed to by
each element of the first-level F1 expansion list is much
smaller than OðNÞ. Therefore, the practical memory
requirement will be much smaller than the theoretical
result. Also, the worst-case time complexity of a search
operation is Oðd	 logNÞ because the expansion list in each
of the d levels has OðNÞ elements. Similarly, the practical
search performance will be much faster than the theoretical
worst-case result.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
classification algorithms and compare it with other promi-
nent dynamic schemes in terms of search speed, memory
requirement, and update speed. We use the ClassBench [22] to
generate IP traffic and the rule sets that are close to real
industrial classifiers. The real implementations of all the
classification schemes based on the same rule tables and
IP traffic allow us to have fair comparisons and obtain
convincing results. The implementation platform is a Debian
GNU/Linux 4.0 system running on a 3-GHz Pentium 4
containing a 16-Kbyte L1 cache, a 1-Mbyte L2 cache, and
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512 Mbytes of main memory. The line size of both L1 and
L2 caches is 64 bytes. We believe the results would be similar
if the experiments are executed on other comparable plat-
forms such as the Alpha. We conduct experiments for the
5D rule sets of up to 10,000 rules generated by ClassBench. We
implement the following three proposed schemes. All these
three proposed schemes use only the first two prefix fields to
construct the hierarchical expansion lists. The remaining
three fields are organized in the form of linear lists as the
existing decision schemes like HyperCuts:

1. Scheme H. The basic hierarchical expansion list
described in Section 5.1.

2. Scheme H kðk1; k2Þ. The hierarchical expansion list
optimized by the simple k Set approach without
rule duplication as described in Section 5.2.3. k1 and
k2 indicate that both the first and second prefix fields
use the simple k Set approach.

3. Scheme H 2kðk1; k2; c1; c2Þ. The hierarchical expan-
sion list optimized by a 2D k1 	 k2-bit segmentation
table of the first two prefix fields as described in
Section 5.2.4. For each search operation, we have to
search four rule subsets that are a segment, k1 Set,
k2 Set, and k1k2 Set.

4. Scheme H 2k optðk1; k2; c1; c2Þ. The improved version
of H 2kðk1; k2; c1; c2Þ optimized by the highest
priority arrangements described in Section 5.2.4.

6.1 Characteristics of Rule Tables

The characteristics of different rule tables have a substantial
impact on the performance of packet classification algo-
rithms. Therefore, we shall briefly describe some well-known
characteristics of the rule tables. The rule tables of various
sizes generated by ClassBench with parameters “random,”
“acl1_seed,” “fw2_seed,” and “ipc1_seed” will be studied.

In the random table, the number of distinct field values in
any of the first four fields is very large. The numbers of
wildcards in the first two prefix fields only account for
3 percent of the total numbers of rules and no wildcard is in
any of the two range fields. The number of distinct field
values is fixed at around 250 and there are very few
wildcards in the F5 field (protocol). For ACL, Firewall, and
IPC tables, one common feature is that the number of
distinct field values in F3, F4, and F5 is fixed at one value
or a small range of values. In ACL tables, the only F3 field
value is the wildcard. Similarly, in Firewall tables, the only
F4 field value is the wildcard. In ACL tables, the number of
distinct F1 values varies around 6 percent to 45 percent of
the total number of rules and the number of distinct
F2 values is fixed at about 300 to 600. The numbers of
wildcards in F1 and F2 fields are also fixed at a small range
of values. Firewall and IPC tables have a similar trend in
the numbers of distinct F2 field values. However, they have
a large gap in the numbers of distinct F1 field values. Also,
the number of wildcards in F1 and F2 fields is large for
Firewall tables compared with other tables.

In addition to the characteristics described above, we also
show the 2D prefix length distribution of the F1 and F2 field
prefixes for the tables of 1,000 rules in Fig. 9. The length
distributions for other tables of different sizes are similar and
thus not shown. The bar charts on the right side are drawn
by grouping the lengths of 8-32 together for later uses. These
2D prefix length distributions are useful for understanding

how to choose proper k1, k2, c1, and c2 parameters for the
proposed scheme H 2k. We divide the length distribution
into four regions marked as A, B, C, and D by drawing two
additional lines at length 8 of both fields. Thus, when we set
k1 and k2 to 8 or less, any rule belonging to region D will be
put into one segment and will not be moved to k1 Sets,
k2 Sets, or k1k2 Set if c1 and c2 are set to large values. When
c1 and c2 are set to 1, the rules in regions B, C, and A will be
put into k1 Sets, k2 Sets, and k1k2 Set, respectively. Increas-
ing c1 and c2 will only cause the rules in regions B, C, and A
to be relocated to some segments.

6.2 Search Speed and Memory Usage

In this section, we first show the average search times and
memory requirements for the proposed scheme H and the
existing schemes EGT, EGT-PC, and HyperCuts. The source
codes of EGT, EGT-PC, and HyperCuts are obtained from
[7] and [13]. Table 6 and Fig. 10 illustrate the detailed results
of the rule tables generated by ClassBench within the
“random” parameter. We can see that scheme H has a much
better search performance (about 2 to 10 times faster) than
EGT, EGT-PC, or HyperCuts. When the size of a table is
1,000 rules or less, scheme H also achieves a good
performance in memory requirement compared with
Hypercut-1 that performs the best in terms of memory
usages. However, the memory requirements of scheme H
explode for the tables of 2,000 rules or larger because many
rules are duplicated in the hierarchical expansion lists. This
is why we propose the optimized schemes H kðk1; k2Þ,
H 2kðk1; k2; c1; c2Þ, and H 2k optðk1; k2; c1; c2Þ to solve the
memory explosion problem for large tables.

Table 7 and Fig. 11 illustrate the search speeds and
memory usages of scheme H k with ðk1; k2Þ ¼ ð4; 4Þ, (4, 8),
(8, 4), and (8, 8) for the Random rule tables of 1,000 or more
rules. As we can see thatH kð4; 4Þ has the best average search
speed and H kð8; 8Þ has the smallest memory usages for all
the rule tables. Except for the table of 1,000 rules,H k is better
than SchemeH both in search speed and memory usage. The
performance results of other setting such as (8, 16), (16, 8), or
(16, 16) that we also experimented are not shown because
they are not so good. In general, the size of themain set inF1
(F2) expansion list decreases as k1 ðk2Þ increases. When
k1 ðk2Þ ¼ 16, main set in F1 (F2) expansion list becomes
empty and all F1 (F2) field prefixes are moved to k Set. As a
result, the memory requirements of schemeH kwith large k1

and/or k2 are close to that of scheme H.
Now, we show the performance results of scheme

H 2kðk1; k2; c1; c2Þ. The detailed results of Random table of
1,000 rules are first shown in Table 8 to illustrate the general
performance trend of Random tables, where the average
and maximum numbers of rules in the subsets, segments
Si;j, k1 Set, k2 Set, and k1k2 Set, are listed. Because the
number of rules in each subset is small, using the
hierarchical expansion list of scheme H as the search data
structure allows for a faster search speed and smaller
memory usage than EGT, EGT-PC, and HyperCuts. For a
fixed ðk1; k2Þ pair in H 2kðk1; k2; c1; c2Þ, while c1 and c2

increase, the sizes of k1 Set, k2 Set, and k1k2 Set are
reduced but the average or maximal segment size is
increased. Overall, the search times decrease and memory
usages increase while c1 and c2 increase. The rule tables of
2,000 or more rules that we have experimented will show a
similar performance trend.
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To clearly represent the performance advantages of
schemeH 2k, we show the best results based on the following
selection criteria. We first sort the results in the increasing
order of memory usages. Let M10 be the 10th smallest
memory usage. Then, we select the best results as the one that
has the shortest search time among the results whose
memory usages are not more than M10. Thus, the best result
in Table 8 isH 2k(6, 6, 8, 8). Table 9 and Fig. 12 summarize the
best settings of all tables of sizes 1,000 to 10,000.H 2k(8, 8, 8, 8)
and H 2k opt(8, 8, 8, 8) usually have the best search speed
among all different settings. But they consume more memory

than most of other settings and thus are not selected as the
best settings. Compared to H k as shown in Table 7, we
can see that H 2k and H 2k opt generally perform better
than H k in search speed and memory usage. H 2k opt
always performs better than H 2k both in search speed and
memory usage, but the difference in search speeds between
H 2k and H 2k opt is not significant for the large tables
consisting of 3,000 to 10,000 rules.

The results of the best settings based on the above
selection criteria for all ACL, Firewall, and IPC tables are
summarized in Table 10 and Fig. 13. For ACL and IPC tables,
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Fig. 9. Prefix length distribution for F1 and F2 prefix pairs of 1,000 rules.
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H 2k opt is 1.66 to 1.93 times as fast as H 2k. However, for
Firewall tables, H 2k opt is only 1.07 to 1.12 times as fast as
H 2k. For ACL tables with a fixed ðk1; k2Þ pair, the search
speed improves while c1 and c2 increase. The reason is as
follows: The set of rules (say S), located in tuples of ði1; i2Þ for
i1 ¼ 8 . . . 32 and i2 ¼ 1 . . . 4 and 6 . . . 7 as shown in Fig. 9d,
are originally put in the corresponding k1 Sets, when c1 and
c2 are set to 1. When c1 and c2 increase, some of rules in ser S
are relocated to some segments. As a result, the average and
maximum numbers of rules in k1 Set are reduced. On the
other hand, the average and maximum numbers of rules in
segments are not increased much. Thus, the search

performance improves when c1 and c2 increase. For Firewall
and IPC tables, no rule locates in tuples of ði1; i2Þ and ði2; i1Þ
for i1 ¼ 8; . . . ; 32 and i2 ¼ 3; . . . ; 7 as shown in Figs. 9e and
9f. Thus, when k1 and k2 are fixed, setting c1 and c2 to larger
values will not have any effect on performance. Now, we
study why increasing k1 and k2 is useful for improving the
search speed. As stated earlier, the rules belonging to region
D in the 2D length distributions will not be affected when
changing the values of k1 and k2. As shown in Figs. 9d, 9e,
and 9f, there are 96 percent, 78 percent, and 18 percent of the
rules located in region D for ACL, IPC, and Firewall tables,
respectively. Therefore, increasing k1 and k2 can redistribute
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TABLE 6
Performance of Scheme H, EGT, EGT-PC, and HyperCuts with Bucket Size¼ 16

Fig. 10. Normalized performance from Table 6.

TABLE 7
Performance of Scheme H k for Random Tables (the Best Results Are Shaded)

Fig. 11. Normalized performance of scheme H k for random tables.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on February 27, 2009 at 14:11 from IEEE Xplore.  Restrictions apply.



much more rules in Firewall tables from k1 Set, k2 Set, and
k1k2 Set to segments than ACL tables. As a result, setting k1

and k2 to large values always improves the search speeds for
Firewall and IPC tables. However, the drawback of large k1

and k2 is the higher memory requirement because of rule
duplications. In other words, H 2kð8; 8; c1; c2Þ always con-
sumes much more memory than other settings. Thus,
H 2kð7; 7; 1; 1Þ instead of H 2kð8; 8; 1; 1Þ is selected as the
best setting for Firewall tables because H 2kð8; 8; 1; 1Þ has a
much higher memory requirement. IPC tables have a similar
performance trend as Firewall tables.

6.3 Update Speed

In addition to the demands for high search speed and low
memory requirement, the multidimensional PC algorithms

require a fast rule table update performance. However, it is
not easy to come up with a fast update algorithm based on
the data structures of the existing PC schemes because the
rule duplication and data structure precomputation are
usually needed. For example, in EGT, HiCut, and Hyper-
Cuts, if a rule contains wildcards in the dimensions selected
for cutting, then it will be duplicated in all the rule subsets
partitioned by the algorithms. As a result, when inserting or
deleting this kind of rule, the data structures of many
involved rule subsets have to be updated, making the
update performance slower. Although the HyperCuts
scheme extracts all the rules containing wildcards in
both the IP source and the destination fields into a set
called W -Set, and the remaining rules are put in another set
called the R-Set for independent decision tree processing,
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TABLE 8
Performance of H 2kðk1; k2; c1; c2Þ for a Random Table of 1,000 Rules

TABLE 9
Performance of Schemes H 2k, H 2k opt for the Random Rule Tables

Fig. 12. Normalized performance of schemes H 2k, H 2k opt for random tables.
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rule duplication still exists, and thus, the update problem is
not solved completely. EGT avoids the rule duplication by
precomputing the switch pointers. However, precomputation
also results in slow update performance. In HiCut and
HyperCuts, precomputation is also needed to provide
better cutting (i.e., balanced decision tree). The decision
tree built without precomputation will have a longer search
path and will thus slow down the search performance. In
scheme H 2kðk1; k2; c1; c2Þ, we can control the degree of rule
duplication by setting different values for c1 and c2.
Obviously, when we set c1 ¼ c2 ¼ 1, there is no rule
duplication across the segments, k1 Set, k2 Set, and
k1k2 Set. Since the rule duplication only occurs inside a
segment, k1 Set, k2 Set, or k1k2 Set that is usually small, the
impact on update performance will be minimal.

To quantitatively evaluate the update performance, we
conduct the experiments as follows: We first randomly

extract 10 percent of the rules from the classifier and build

the search structure according to the remaining 90 percent of

the rules. We then randomly insert the extracted rules into

the search structure to obtain the insertion time. After that,

we randomly select another 10 percent of rules from the

classifier and delete them from the search structure to obtain

the deletion times. The average of insertion and deletion

times is obtained as the update time. Because the available

source codes of EGT, EGT-PC, and HyperCuts in [7] and [13]

do not support rule updates, we only compare the update

performance of the proposed schemeH 2kðk1; k2; c1; c2Þwith

our implementation of EGT with the support of update. As

shown in Table 11 and Fig. 14, the insertion and deletion

performance of the scheme H 2kðk1; k2; c1; c2Þ are about six

to seven and five to nine times better than EGT, respectively.
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TABLE 10
Performance of Schemes H 2k and H 2k opt

Fig. 13. Histogrammed performance of schemes H 2k and H 2k opt.
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7 CONCLUSIONS

In this paper, we have proposed a set of efficient algorithms
for multidimensional packet classification. All the proposed
algorithms are based on the hierarchical data structures of
binary range and prefix searches augmented with a multi-
dimensional segmentation table. The experimental results
showed that our scheme outperforms other schemes not
only in terms of classification speed and memory usage but
also in terms of update speed.
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TABLE 11
Update Performance of Schemes H 2kðk1; k2; c1; c2Þ and EGT (in Clock Cycles)

Fig. 14. Normalized update performance of schemes H 2kð4; 4; 1; 1Þ and EGT.
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